contestada

Given that P = (2, 9) and Q = (4, 14), find the component form and magnitude of vector PQ . (1 point) <2, 5>, square root of twenty nine <-2, -5>, 29 <2, 5>, 29 <-2, -5>, square root of twenty nine

Respuesta :

Given:

The two endpoints of a vector are P = (2, 9) and Q = (4, 14).

To find:

The component form and magnitude of vector PQ .

Solution:

A vector is defined as

[tex]v=\left<x_2-x_1,y_2-y_1\right>[/tex]

Where, [tex](x_1,y_1)[/tex] is the initial point and [tex](x_2,y_2)[/tex] is the terminal point.

Two endpoints of a vector are P = (2, 9) and Q = (4, 14). So, the vector PQ is

[tex]\overrightarrow{PQ}=\left<4-2,14-9\right>[/tex]

[tex]\overrightarrow{PQ}=\left<2,5\right>[/tex]

Component form of vector PQ is [tex]\left<2,5\right>[/tex].

The magnitude of a vector [tex]v=\left<a,b\right>[/tex] is

[tex]|\vec{v}|=\sqrt{a^2+b^2}[/tex]

The magnitude of vector PQ is:

[tex]|\overrightarrow{PQ}|=\sqrt{2^2+5^2}[/tex]

[tex]|\overrightarrow{PQ}|=\sqrt{4+25}[/tex]

[tex]|\overrightarrow{PQ}|=\sqrt{29}[/tex]

Therefore, the correct option is A.