Given:
The two endpoints of a vector are P = (2, 9) and Q = (4, 14).
To find:
The component form and magnitude of vector PQ .
Solution:
A vector is defined as
[tex]v=\left<x_2-x_1,y_2-y_1\right>[/tex]
Where, [tex](x_1,y_1)[/tex] is the initial point and [tex](x_2,y_2)[/tex] is the terminal point.
Two endpoints of a vector are P = (2, 9) and Q = (4, 14). So, the vector PQ is
[tex]\overrightarrow{PQ}=\left<4-2,14-9\right>[/tex]
[tex]\overrightarrow{PQ}=\left<2,5\right>[/tex]
Component form of vector PQ is [tex]\left<2,5\right>[/tex].
The magnitude of a vector [tex]v=\left<a,b\right>[/tex] is
[tex]|\vec{v}|=\sqrt{a^2+b^2}[/tex]
The magnitude of vector PQ is:
[tex]|\overrightarrow{PQ}|=\sqrt{2^2+5^2}[/tex]
[tex]|\overrightarrow{PQ}|=\sqrt{4+25}[/tex]
[tex]|\overrightarrow{PQ}|=\sqrt{29}[/tex]
Therefore, the correct option is A.