Respuesta :

Answer:

Step-by-step explanation:

Let the equation of the line 'a' is,

y = mx + c

Here, m = slope of the line

c = y-intercept

For line 'a',

Slope of the line = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

m = [tex]\frac{10}{16}[/tex]

m = [tex]\frac{5}{8}[/tex]

y-intercept = 20

Therefore, equation of the line 'a' is,

y = [tex]\frac{5}{8}x+20[/tex]

Similarly, equation of the line 'b' is,

y = m'x + c'

Slope of the line = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

m' = [tex]\frac{20}{16}[/tex]

m' = [tex]\frac{5}{4}[/tex]

y-intercept = 0

Therefore, equation of the line is 'b' is,

y = [tex]\frac{5}{4}x[/tex]

1). Line 'b' represents a proportional relationship → FALSE

2). The constant of proportionality of y to x for line 'a' is [tex]\frac{1}{2}[/tex] → FALSE

3). The ratio of y-coordinate to x-coordinate of one of the points on line b is 25 : 8 → FALSE

4). let a passes through the point [tex](1,\frac{5}{4})[/tex] so the constant of proportionality is [tex]\frac{5}{4}[/tex] → TRUE

ACCESS MORE