Answer:
The number could be [tex]-7.5[/tex] or [tex]8[/tex].
Step-by-step explanation:
I'm going to assume this means "The square of a number is 60 greater than half of the number." Let the number be [tex]x[/tex]. The square of [tex]x[/tex] will be [tex]x^{2}[/tex]. "is" denotes that we use the "[tex]=[/tex]" sign, so our equation so far is [tex]x^{2} =[/tex] . Half of [tex]x[/tex] is [tex]\frac{1}{2}x[/tex], and "greater than" implies addition, so [tex]60[/tex] greater than [tex]\frac{1}{2}x[/tex] is [tex]\frac{1}{2}x+60[/tex]. Therefore, the equation is [tex]x^{2} =\frac{1}{2}x+60[/tex].
Solving for [tex]x[/tex], we get:
[tex]x^{2} =\frac{1}{2}x+60[/tex]
[tex]2x^{2} =x+120[/tex] (Multiply both sides of the equation by [tex]2[/tex] to get rid of the fraction)
[tex]2x^{2} -x-120=0[/tex] (Subtract [tex]x+120[/tex] from both sides of the equation to make it easier to solve)
[tex]2x^{2} +15x-16x-120=0[/tex] (Split [tex]-x[/tex] into [tex]15x-16x[/tex] to make the LHS easier to factor)
[tex]x(2x+15)-8(2x+15)=0[/tex] (Take a common factor out of the first two terms and the last two terms)
[tex](2x+15)(x-8)=0[/tex] (Take another common factor out)
[tex]2x+15=0,x-8=0[/tex] (Zero Product Property)
[tex]x=-7.5,8[/tex] (Solve)
Hope this helps!