The volume of the cone is [tex]\frac{\pi}{4}[/tex] the volume of the pyramid
The ratio of the area is given as:
[tex]R= \frac{\pi r^2}{4r^2}[/tex]
or
[tex]R= \frac{\pi}{4}[/tex]
The volume of a cone is:
[tex]V_1 = \frac 13 \pi r^2 h[/tex]
For a pyramid, the volume is:
[tex]V_2 = \frac 43 r^2h[/tex]
Rewrite as:
[tex]V_2 = 4 * \frac 13 r^2h[/tex]
Divide by 4
[tex]\frac{V_2}{4} = \frac 13 r^2h[/tex]
Substitute [tex]\frac{V_2}{4} = \frac 13 r^2h[/tex] in [tex]V_1 = \frac 13 \pi r^2 h[/tex]
So, we have:
[tex]V_1 = \frac{V_2}{4} * \pi[/tex]
This gives
[tex]V_1 = \frac{\pi}{4} V_2[/tex]
Hence, the volume of the cone is [tex]\frac{\pi}{4}[/tex] the volume of the pyramid
Read more about volumes at:
https://brainly.com/question/9554871