What is the solution to this equation?
![What is the solution to this equation class=](https://us-static.z-dn.net/files/d4e/cfb4a4c038eebe259bb18ccfecdbaef7.png)
Answer:
D
Step-by-step explanation:
Using the rules of logarithms
log x - log y = log ([tex]\frac{x}{y}[/tex] )
log [tex]x^{n}[/tex] = nlog x
[tex]log_{b}[/tex] x = n ⇒ x = [tex]b^{n}[/tex]
Given
[tex]log_{3}[/tex] (4x) - 2[tex]log_{3}[/tex] x = 2
[tex]log_{3}[/tex] (4x) - [tex]log_{3}[/tex] x² = 2
[tex]log_{3}[/tex] ([tex]\frac{4x}{x^2}[/tex] ) = 2
[tex]log_{3}[/tex] ([tex]\frac{4}{x}[/tex] ) = 2
[tex]\frac{4}{x}[/tex] = 3² = 9 ( multiply both sides by x )
4 = 9x ( divide both sides by 9 )
[tex]\frac{4}{9}[/tex] = x → D