Answer:
The correct solution is option A "10 meters".
Explanation:
The given values are:
Wave X,
Frequency,
[tex]F_x=200 \ H_z[/tex]
Wavelength
[tex]\lambda_x=35 \ m[/tex]
Wave Y,
Frequency,
[tex]F_y=700 \ Hz[/tex]
Let its wavelength = [tex]\lambda_y[/tex]
As we know,
⇒ [tex]v=f \lambda[/tex]
For both waves, medium is same then
⇒ [tex]v_x=v_y[/tex]
⇒ [tex]f_x \lambda_x=f_y \lambda_y[/tex]
then,
⇒ [tex]\lambda_y=\frac{f_x \lambda_x}{f_y}[/tex]
On substituting the estimated values in the above equation, we get
⇒ [tex]=\frac{200\times 35}{700}[/tex]
⇒ [tex]=\frac{7000}{700}[/tex]
⇒ [tex]=10 \ m[/tex]