Answer:
4 m = width of the rectangle.
6 m = length of the rectangle
20 m = perimeter of rectangle
3 m = side of the square
Step-by-step explanation:
Let s = length of side of square
s + 1 = width of rectangle
s + 3 = length of rectangle
Area of rectangle = (s + 1)(s + 3)
Area of square = [tex]s^{2}[/tex]
So, (s + 1)(s + 3) + [tex]s^{2}[/tex] = 33
[tex]s^{2}[/tex] + 4s + 3 + [tex]s^{2}[/tex] = 33
2[tex]s^{2}[/tex] + 4s - 30 = 0
2([tex]s^{2}[/tex] + 2s - 15) = 0
2(s + 5)(s - 3) = 0
s = -5 or s = 3
Length of a side cannot be negative, so -5 is ignored
3 m = side of the square
4 m = width of the rectangle
6 m = length of the rectangle
2(4) + 2(6) = 8 + 12 = 20 m = perimeter of rectangle