Respuesta :
Answer:
(12, - 1 )
Step-by-step explanation:
Given the 2 equations
x + 4y = 8 → (1)
2x - 5y = 29 → (2)
Rearrange (1), expressing x in terms of y by subtracting 4y from both sides
x = 8 - 4y → (3)
Substitute x = 8 - 4y into (2)
2(8 - 4y) - 5y = 29 ← distribute and simplify left side
16 - 8y - 5y = 29
16 - 13y = 29 ( subtract 16 from both sides )
- 13y = 13 ( divide both sides by - 13 )
y = - 1
Substitute y = - 1 into (3) for corresponding value of x
x = 8 - 4(- 1) = 8 + 4 = 12
solution is (12, - 1 )
[tex]x = 8 - 4y \: \: eqn \: 1[/tex]
now in eqn 2
[tex]2(8 - 4y) - 5y = 29[/tex]
[tex]16 - 8y - 5y = 29[/tex]
[tex]16 - 13y = 29[/tex]
[tex]16 - 29 = 13y[/tex]
[tex]13 = 13y[/tex]
[tex] \frac{13}{13} = y[/tex]
[tex]y = 1[/tex]
Now in eqn 1
[tex]x = 8 - 4y[/tex]
[tex]x = 8 - 4 \times 1[/tex]
[tex]x = 8 - 4[/tex]
[tex]x = 4[/tex]
therefore x=4 & y=1 answer