Find the indicated side of the triangle.
b
45°
a
28
[?]
a =
... need help asap!!

Answer:
[tex] a = \frac{28}{ \sqrt{2} } [/tex]
Step-by-step explanation:
[tex] \sin \: 45 \degree = \frac{a}{28} \\ \\ \frac{1}{ \sqrt{2} } = \frac{a}{28} \\ \\ a = \frac{28}{ \sqrt{2} } [/tex]
The side of "a" of right angled triangle is [tex]\frac{28}{\sqrt{2} }[/tex] .
Trigonometric ratios are the ratios of the length of sides of a triangle. These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.
The basic trigonometric ratios formulas are given below,
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
sec θ = Hypotenuse/Base
cosec θ = Hypotenuse/Perpendicular
cot θ = Base/Perpendicular
According to the question
In right angle Δ
Hypotenuse = 28
Base for ∠45° = b
Perpendicular for ∠45° = a
now , Using trigonometric ratio
sin θ [tex]= \frac{Perpendicular}{Hypotenuse }[/tex]
sin 45° = [tex]= \frac{a}{28}[/tex]
[tex]\frac{1}{\sqrt{2} } = \frac{a}{28}[/tex]
a = [tex]\frac{28}{\sqrt{2} }[/tex]
Hence, side of "a" of right angled triangle is [tex]\frac{28}{\sqrt{2} }[/tex] .
To know more about trigonometric ratio here:
https://brainly.com/question/25122825
#SPJ2