Respuesta :

Answer:

[tex] a = \frac{28}{ \sqrt{2} } [/tex]

Step-by-step explanation:

[tex] \sin \: 45 \degree = \frac{a}{28} \\ \\ \frac{1}{ \sqrt{2} } = \frac{a}{28} \\ \\ a = \frac{28}{ \sqrt{2} } [/tex]

The side of "a" of right angled triangle is  [tex]\frac{28}{\sqrt{2} }[/tex] .

What is trigonometric ratio?

Trigonometric ratios are the ratios of the length of sides of a triangle. These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.

The basic trigonometric ratios formulas are given below,

sin θ = Perpendicular/Hypotenuse

cos θ = Base/Hypotenuse

tan θ = Perpendicular/Base

sec θ = Hypotenuse/Base

cosec θ = Hypotenuse/Perpendicular

cot θ      = Base/Perpendicular

According to the question

In right angle Δ

Hypotenuse = 28

Base for ∠45° = b

Perpendicular for ∠45° = a

now , Using trigonometric ratio

sin θ [tex]= \frac{Perpendicular}{Hypotenuse }[/tex]

sin 45° = [tex]= \frac{a}{28}[/tex]

[tex]\frac{1}{\sqrt{2} } = \frac{a}{28}[/tex]

a = [tex]\frac{28}{\sqrt{2} }[/tex]

Hence, side of "a" of right angled triangle is  [tex]\frac{28}{\sqrt{2} }[/tex] .

To know more about trigonometric ratio here:

https://brainly.com/question/25122825

#SPJ2

ACCESS MORE