Find the answer for m∠EFD
![Find the answer for mEFD class=](https://us-static.z-dn.net/files/da8/3a0a8eaf39b7f898b6d3d82ec9f26ab4.png)
Given:
In triangle DEF, [tex]DE = EF[/tex] and [tex]m\angle 98^\circ[/tex].
To find:
The measure of angle EFD.
Solution:
In triangle DEF,
[tex]DE = EF[/tex] (Given)
It means triangle DEF is an isosceles triangle.
[tex]m\angle EDF=m\angle EFD[/tex] (Base angles of an isosceles triangle are equal)
Using angle sum property in triangle DEF, we get
[tex]m\angle DE F+m\angle EFD+m\angle EDF=180^\circ[/tex]
[tex]98^\circ +m\angle EFD+m\angle EFD=180^\circ[/tex]
[tex]2m\angle EFD=180^\circ-98^\circ[/tex]
[tex]2m\angle EFD=82^\circ[/tex]
Divide both sides by 2.
[tex]m\angle EFD=\dfrac{82^\circ}{2}[/tex]
[tex]m\angle EFD=41^\circ[/tex]
Therefore, the measure of angle EFD is 41 degrees.