Respuesta :

Given:

In triangle DEF, [tex]DE = EF[/tex] and [tex]m\angle 98^\circ[/tex].

To find:

The measure of angle EFD.

Solution:

In triangle DEF,

[tex]DE = EF[/tex]           (Given)

It means triangle DEF is an isosceles triangle.

[tex]m\angle EDF=m\angle EFD[/tex]           (Base angles of an isosceles triangle are equal)

Using angle sum property in triangle DEF, we get

[tex]m\angle DE F+m\angle EFD+m\angle EDF=180^\circ[/tex]

[tex]98^\circ +m\angle EFD+m\angle EFD=180^\circ[/tex]

[tex]2m\angle EFD=180^\circ-98^\circ[/tex]

[tex]2m\angle EFD=82^\circ[/tex]

Divide both sides by 2.

[tex]m\angle EFD=\dfrac{82^\circ}{2}[/tex]

[tex]m\angle EFD=41^\circ[/tex]

Therefore, the measure of angle EFD is 41 degrees.

ACCESS MORE