Respuesta :

Answer:

Let [tex]\left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right)[/tex], we proceed to prove the trigonometric expression by trigonometric identity:

1) [tex]\left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right)[/tex] Given

2) [tex]\left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)[/tex]   [tex]\tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}[/tex]

3) [tex]\left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)[/tex]    

4) [tex]\left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)[/tex]    [tex]\sin^{2}A+\cos^{2}A = 1[/tex]

5) [tex]\frac{1}{\sin^{2}A\cdot \cos^{2}A}[/tex]

6) [tex]\frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}[/tex]    [tex]\sin^{2}A+\cos^{2}A = 1[/tex]

7) [tex]\frac{1}{\sin^{2}A-\sin^{4}A}[/tex] Result

Step-by-step explanation:

Let [tex]\left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right)[/tex], we proceed to prove the trigonometric expression by trigonometric identity:

1) [tex]\left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right)[/tex] Given

2) [tex]\left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)[/tex]   [tex]\tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}[/tex]

3) [tex]\left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)[/tex]    

4) [tex]\left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)[/tex]    [tex]\sin^{2}A+\cos^{2}A = 1[/tex]

5) [tex]\frac{1}{\sin^{2}A\cdot \cos^{2}A}[/tex]

6) [tex]\frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}[/tex]    [tex]\sin^{2}A+\cos^{2}A = 1[/tex]

7) [tex]\frac{1}{\sin^{2}A-\sin^{4}A}[/tex] Result

ACCESS MORE