Respuesta :
Given:
The endpoints of a line segment are (-5, 1) and (-1, -5).
To find:
The equation for the perpendicular bisector of the given line segment.
Solution:
The endpoints of a line segment, (-5, 1) and (-1, -5).
perpendicular bisector is perpendicular to the line segment and passes through the midpoint of the line segment.
Midpoint of the given line segment is:
[tex]Midpoint=\left(\dfrac{-5+(-1)}{2},\dfrac{1+(-5)}{2}\right)[/tex]
[tex]Midpoint=\left(\dfrac{-5-1}{2},\dfrac{1-5}{2}\right)[/tex]
[tex]Midpoint=\left(\dfrac{-6}{2},\dfrac{-4}{2}\right)[/tex]
[tex]Midpoint=\left(-3,-2\right)[/tex]
The slope of the segment is:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]m=\dfrac{-5-1}{-1-(-5)}[/tex]
[tex]m=\dfrac{-6}{4}[/tex]
[tex]m=\dfrac{-3}{2}[/tex]
The product of the slopes of the perpendicular lines is -1.
[tex]m\times m_1=-1[/tex]
[tex]\dfrac{-3}{2}\times m_1=-1[/tex]
[tex]m_1=\dfrac{2}{3}[/tex]
Slope of perpendicular bisector is [tex]m_1=\dfrac{2}{3}[/tex] and it passes through the point (-3,-2). So, the equation of the perpendicular bisector is
[tex]y-y_1=m_1(x-x_1)[/tex]
[tex]y-(-2)=\dfrac{2}{3}(x-(-3))[/tex]
[tex]y+2=\dfrac{2}{3}(x+3)[/tex]
[tex]y+2=\dfrac{2}{3}x+2[/tex]
Subtract both sides by 2.
[tex]y=\dfrac{2}{3}x[/tex]
Therefore, the equation of the perpendicular bisector is [tex]y=\dfrac{2}{3}x[/tex].