Respuesta :

Answer:

a) [tex]x_{1} = \frac{\pi}{3}\,rad[/tex], [tex]x_{2} = \frac{5\pi}{3}\,rad[/tex], b) [tex]x_{1} = \frac{\pi}{4}\,rad[/tex], [tex]x_{2} = \frac{3\pi}{4}\,rad[/tex], [tex]x_{3} = \frac{5\pi}{4}\,rad[/tex], [tex]x_{4} = \frac{7\pi}{4} \,rad[/tex]

Step-by-step explanation:

a) We proceed to solve the expression by algebraic and trigonometrical means:

1) [tex]3\cdot \sec x + 2 = 8[/tex]

2) [tex]3\cdot \sec x = 6[/tex]

3) [tex]\sec x = 2[/tex]

4) [tex]\frac{1}{\cos x} = 2[/tex]

5) [tex]\cos x = \frac{1}{2}[/tex]

6) [tex]x = \cos^{-1} \frac{1}{2}[/tex]

Cosine has positive values in first and fourth quadrants. Then, we have the following two solutions:

[tex]x_{1} = \frac{\pi}{3}\,rad[/tex], [tex]x_{2} = \frac{5\pi}{3}\,rad[/tex]

b) We proceed to solve the expression by algebraic and trigonometrical means:

1) [tex]6\cdot \cos^{2} x = 3[/tex]

2) [tex]\cos^{2} x = \frac{1}{2}[/tex]

3) [tex]\cos x = \pm\frac{\sqrt{2}}{2}[/tex]

4) [tex]x = \cos^{-1} \left(\pm \frac{\sqrt {2}}{2} \right)[/tex]

There is one solution for each quadrant. That is to say:

[tex]x_{1} = \frac{\pi}{4}\,rad[/tex], [tex]x_{2} = \frac{3\pi}{4}\,rad[/tex], [tex]x_{3} = \frac{5\pi}{4}\,rad[/tex], [tex]x_{4} = \frac{7\pi}{4} \,rad[/tex]

ACCESS MORE