Answer:
[tex]M_{1}[/tex] = [tex]\frac{F_{g}r^{2} }{GM_{2} }[/tex]
Step-by-step explanation:
From Newton's law of universal gravitation, the force of attraction between two objects of masses [tex]M_{1}[/tex] and [tex]M_{2}[/tex] is given as:
[tex]F_{g}[/tex] = [tex]\frac{GM_{1} M_{2} }{r^{2} }[/tex]
Thus, cross multiply to have;
[tex]F_{g}[/tex][tex]r^{2}[/tex] = G[tex]M_{1}[/tex][tex]M_{2}[/tex]
then divide through by G[tex]M_{2}[/tex] to have,
[tex]M_{1}[/tex] = [tex]\frac{F_{g}r^{2} }{GM_{2} }[/tex]
Therefore, [tex]M_{1}[/tex] can be expressed in terms of [tex]F_{g}[/tex], [tex]r^{2}[/tex], G, [tex]M_{2}[/tex] as [tex]\frac{F_{g}r^{2} }{GM_{2} }[/tex]