Find the equation of the straight line which passes through the point (-1,3) and make intercept on x - axis as thrice that on y - axis .​

Respuesta :

Answer:

[tex]y = -\frac{1}{3}x + \frac{8}{3}[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (-1,3)[/tex]

[tex]Intercept\ on\ x-axis = Intercept\ on\ y-axis.[/tex]

Required

Determine the equation

First, we calculate the intercepts using:

[tex]\frac{x}{a} + \frac{y}{b} = 1[/tex]

Where

b = Intercept on y axis.

a = Intercept on x axis.

From the question:

[tex]a = 3b[/tex]

The equation becomes:

[tex]\frac{x}{3b} + \frac{y}{b} = 1[/tex]

Multiply through by 3b

[tex]x + 3y = 3b[/tex]

We have: [tex](x_1,y_1) = (-1,3)[/tex]

So:

[tex]-1 + 3 * 3 = 3b[/tex]

[tex]8 = 3b[/tex]

Make b the subject

[tex]b = \frac{8}{3}[/tex]

Substitute [tex]b = \frac{8}{3}[/tex] in [tex]x + 3y = 3b[/tex] to get the equation

[tex]x + 3y = 3 * \frac{8}{3}[/tex]

[tex]x + 3y = 8[/tex]

Make 3y the subject

[tex]3y = -x + 8[/tex]

Make y the subject

[tex]y = -\frac{1}{3}x + \frac{8}{3}[/tex]