The area of a rectangle is 27 m”, and the length of the rectangle is 3 m less than twice the width. Find the dimensions of the rectangle.

Respuesta :

Answer:

[tex]L = 6[/tex] --- Length

[tex]W = 4.5[/tex] --- Width

Step-by-step explanation:

Given

Let: [tex]L = Length; W = Width[/tex]

[tex]Area = 27m^2[/tex]

[tex]L = 2W- 3m[/tex]

Required

Find the dimensions of the rectangle

Area (A) is calculated as:

[tex]A = L * W[/tex]

This gives:

[tex]27 = (2W - 3) * W[/tex]

Open bracket

[tex]27 = 2W^2 - 3W[/tex]

Express as a quadratic function

[tex]2W^2 - 3W - 27 = 0[/tex]

Expand

[tex]2W^2 + 6W - 9W - 27 = 0[/tex]

Factorize:

[tex]2W(W + 3) - 9(W + 3) = 0[/tex]

[tex](2W - 9)(W + 3) = 0[/tex]

This gives:

[tex]2W - 9 = 0\ or\ W + 3 = 0[/tex]

[tex]2W = 9 \ or\ W = -3[/tex]

Width can not be negative.

So:

[tex]2W = 9[/tex]

[tex]W = 4.5[/tex]

Recall that:

[tex]L = 2W- 3m[/tex]

[tex]L = 2 * 4.5 - 3[/tex]

[tex]L = 6[/tex]