Answer:
False
Step-by-step explanation:
Given
[tex]6 , 12 , 18 , 24 , .......... , 284[/tex]
Required
Determine if it is an AP or not
First, calculate the common difference (d)
[tex]d = 24 - 18=6[/tex]
[tex]d = 18 - 12=6[/tex]
[tex]d = 12 - 6=6[/tex]
Next, is to determine if the last term is valid using:
[tex]T_n = a + (n - 1) d[/tex]
So, we have:
[tex]284 = 6 + (n - 1) * 6[/tex]
[tex]284 = 6 + 6n - 6[/tex]
Collect like terms
[tex]284 = 6 - 6+ 6n[/tex]
[tex]284 = 6n[/tex]
Divide by 6
[tex]284/6 = n[/tex]
[tex]n = 284/6[/tex]
[tex]n = 47.33[/tex]
The value of n must be a positive whole number. Hence, it is not an AP