Respuesta :

Given:

The function is

[tex]f(x)=2x^3+ax^2-37x-60[/tex]

The binomial [tex]x-4[/tex] is a factor of f(x).

To find:

The value of [tex]a[/tex].

Solution:

If [tex]x-c[/tex] is a factor of f(x), then [tex]f(c)=0[/tex].

It is given that, [tex]x-4[/tex] is a factor of f(x), then [tex]f(4)=0[/tex].

We have,

[tex]f(x)=2x^3+ax^2-37x-60[/tex]

Substituting x=4, we get

[tex]f(4)=2(4)^3+a(4)^2-37(4)-60[/tex]

[tex]f(4)=2(64)+a(16)-148-60[/tex]

[tex]f(4)=128+16a-208[/tex]

[tex]f(4)=16a-80[/tex]

Now,

[tex]f(4)=0[/tex]

[tex]16a-80=0[/tex]

[tex]16a=80[/tex]

[tex]a=\dfrac{80}{16}[/tex]

[tex]a=5[/tex]

Therefore, the value of a is 5.