Given:
The function is
[tex]f(x)=2x^3+ax^2-37x-60[/tex]
The binomial [tex]x-4[/tex] is a factor of f(x).
To find:
The value of [tex]a[/tex].
Solution:
If [tex]x-c[/tex] is a factor of f(x), then [tex]f(c)=0[/tex].
It is given that, [tex]x-4[/tex] is a factor of f(x), then [tex]f(4)=0[/tex].
We have,
[tex]f(x)=2x^3+ax^2-37x-60[/tex]
Substituting x=4, we get
[tex]f(4)=2(4)^3+a(4)^2-37(4)-60[/tex]
[tex]f(4)=2(64)+a(16)-148-60[/tex]
[tex]f(4)=128+16a-208[/tex]
[tex]f(4)=16a-80[/tex]
Now,
[tex]f(4)=0[/tex]
[tex]16a-80=0[/tex]
[tex]16a=80[/tex]
[tex]a=\dfrac{80}{16}[/tex]
[tex]a=5[/tex]
Therefore, the value of a is 5.