Answer:
D. Increases by 35.2%
Step-by-step explanation:
Let the initial radius and height be r and h respectively.
So, the volume (V) is:
[tex]V = \frac{1}{3}\pi r^2h[/tex]
When radius increases by 30%.
[tex]R =r + 30\% * r[/tex]
[tex]R =r + 0.30 * r = r +0.3r = 1.3r[/tex]
When height decreases by 20%.
[tex]H = h - 20\% * h[/tex]
[tex]H = h - 0.20 * h = h - 0.20h = 0.8h[/tex]
So, the new volume V2 is:
[tex]V_2 = \frac{1}{3}\pi R^2H[/tex]
This gives:
[tex]V_2 = \frac{1}{3}\pi (1.3r)^2*(0.8h)[/tex]
[tex]V_2 = \frac{1}{3}\pi *1.69r^2*0.8h[/tex]
Rewrite as:
[tex]V_2 = \frac{1}{3}\pi *r^2h*1.69 * 0.8[/tex]
[tex]V_2 = \frac{1}{3}\pi *r^2h*1.352[/tex]
Rewrite as:
[tex]V_2 = \frac{1}{3}\pi *r^2h*(1 + 0.352)[/tex]
Express as percentage:
[tex]V_2 = \frac{1}{3}\pi *r^2h*(1 + 35.2\%)[/tex]
This implies that the volume increases by 35.2%