Respuesta :

Answer:

[tex]a = \frac{7}{2}[/tex]  and  [tex]b = \frac{-69}{4}[/tex]

Step-by-step explanation:

Given

[tex]y = x^2 + 7x - 5[/tex]

Required:

Write as:

[tex]y = (x + a)^2 + b[/tex]

Determine the values of a and b

[tex]y = x^2 + 7x - 5[/tex]

[tex]y = (x + a)^2 + b[/tex]

Expand

[tex]y = x^2 + 2ax + a^2 + b[/tex]

So, we have:

[tex]y = x^2 + 2ax + a^2 + b[/tex]

[tex]y = x^2 + 7x - 5[/tex]

By comparison:

[tex]2ax = 7x[/tex]

[tex]a^2 + b = -5[/tex]

Solve for x in: [tex]2ax = 7x[/tex]

[tex]2a = 7[/tex]

Divide through by 2

[tex]a = \frac{7}{2}[/tex]

Substitute [tex]a = \frac{7}{2}[/tex] in [tex]a^2 + b = -5[/tex]

[tex](\frac{7}{2})^2 + b = -5[/tex]

[tex]\frac{49}{4}+ b = -5[/tex]

Make b the subject

[tex]b = -5 -\frac{49}{4}[/tex]

[tex]b = \frac{-20-49}{4}[/tex]

[tex]b = \frac{-69}{4}[/tex]