Respuesta :

Answer:

[tex]c = 3.6[/tex]

[tex]A = 56.4^\circ[/tex]

[tex]B = 33.6^\circ[/tex]

Step-by-step explanation:

Given

See attachment

Solving (a): Segment C

To do this, we make use of Pythagoras theorem

[tex]c^2 =a^2 + b^2[/tex]

[tex]c^2 =2^2 + 3^2[/tex]

[tex]c^2 = 4 + 9[/tex]

[tex]c^2 = 13[/tex]

Take the square root of both sides

[tex]c = \sqrt{13[/tex]

[tex]c = 3.6055[/tex]

[tex]c = 3.6[/tex] --- Approximate

Solving (b): Measure of A

To do this, we make use of:

[tex]sin\ A = \frac{Opposite}{Hypotenuse}[/tex]

This gives:

[tex]sin\ A = \frac{3}{3.6}[/tex]

[tex]sin\ A = 0.8333[/tex]

Take arcsin of both sides

[tex]A = sin^{-1}(0.8333)[/tex]

[tex]A = 56.4^\circ[/tex]

Solving (c): The measure of C

This is calculated as:

[tex]A + B + 90^\circ = 180^\circ[/tex]

So, we have:

[tex]B = 180^\circ - 90^\circ - 56.4^\circ[/tex]

[tex]B = 33.6^\circ[/tex]

Ver imagen MrRoyal
ACCESS MORE