Answer: 89.83 g of [tex]K_2CO_3[/tex] will be left as excess reactant after the reaction.
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} FeBr_2=\frac{250.0g}{215.65g/mol}=1.159moles[/tex]
[tex]\text{Moles of} K_2CO_3=\frac{250.0g}{138.21g/mol}=1.809moles[/tex]
The balanced chemical reaction is:
[tex]FeBr_2+K_2CO_3\rightarrow 2KBr+FeCO_3[/tex]
According to stoichiometry :
1 mole of [tex]FeBr_2[/tex] require = 1 mole of [tex]K_2CO_3[/tex]
Thus 1.159 mole of [tex]FeBr_2[/tex] will require=[tex]\frac{1}{1}\times 1.159=1.159moles[/tex] of [tex]K_2CO_3[/tex]
Thus [tex]FeBr_2[/tex] is the limiting reagent as it limits the formation of product and [tex]K_2CO_3[/tex] is the excess reagent.
moles of [tex]K_2CO_3[/tex] left = (1.809-1.159) = 0.650
Mass of [tex]K_2CO_3[/tex]= [tex]moles\times {\text {Molar mass}}=0.650moles\times 138.2g/mol=89.83g[/tex]
Thus 89.83 g of [tex]K_2CO_3[/tex] will be left as excess reactant after the reaction.