Write an expression for the product (See picture) without a perfect square factor in the radicand.

Answer: 3x^2√10
Step-by-step explanation:
√6x * √15x^3
The product of roots with the same index is equal to the root, so
√6x * 15x^3
Calculate the sum inside the radical
√90x^4
Then, you can simplify the radical expression and move the variable+exponent
3x^2√10
The expression after product is [tex]x^{2} \sqrt{90}[/tex].
Option A is correct.
The given expression is,
[tex]\sqrt{6x} \cdot\sqrt{15x^{3} }[/tex]
We have to simplify above expression.
[tex]\sqrt{6x} \cdot\sqrt{15x^{3} }=\sqrt{15*6*x^{4} } \\\\\sqrt{6x} \cdot\sqrt{15x^{3} }=\sqrt{90*x^{4} } \\\\\sqrt{6x} \cdot\sqrt{15x^{3} }=x^{2} \sqrt{90}[/tex]
Hence. the expression after product is [tex]x^{2} \sqrt{90}[/tex].
Learn more about the radical expression here:
https://brainly.com/question/8952483