The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min. If one such class is randomly selected, find the probability that the class length is between 51.5 and 51.7 min. P(51.5 < X < 51.7)

Respuesta :

Answer:

0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.

Step-by-step explanation:

A distribution is called uniform if each outcome has the same probability of happening.

The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

[tex]P(c \leq X \leq d) = \frac{d - c}{b - a}[/tex]

The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min.

This means that [tex]a = 50, b = 52[/tex]

If one such class is randomly selected, find the probability that the class length is between 51.5 and 51.7 min.

[tex]P(51.5 \leq X \leq 51.7) = \frac{51.7 - 51.5}{52 - 50} = \frac{0.2}{2} = 0.1[/tex]

0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.

ACCESS MORE