Respuesta :
The speed of current is [tex]\rm 2 \:km/h[/tex].
What is the relation between distance,speed and time?
The relationship between distance, time and speed can be presented as:
[tex]\begin{aligned} \rm Distance &= Speed \times Time\\\\Speed &= \dfrac{\rm Distance}{Time} \\\\\rm Time &= \dfrac{\rm Distance}{\rm Speed} \end[/tex]
Calculations:
Given:
[tex]\begin{aligned} \rm Distance\: traveled\: on\: motorboat &= 25\:km\\\rm Speed\:of\:motorboat\:in\:still\:water &= 12\:km/h \end[/tex]
Let the speed of the current be [tex]\rm x[/tex]
The speed of the boat traveling against the current is [tex]{(12 -\rm x) km/h}[/tex]
Time spent on motorboat is 10 hours less than time spent on raft.
Therefore:
[tex]\rm \dfrac{25km}{x\:km/h} - \dfrac{25km}{(12 - x)km/h} = 10[/tex]
The equation obtained will be:
[tex]\dfrac{25}{\rm x} - \dfrac{25}{(12-\rm x)} - = 10[/tex]
Multiplying both sides of the equation by [tex]\rm x(12 - x )[/tex]
[tex]\begin{aligned} \rm 25(12 - x) - 25x &= 10\times \rm x(12 - x)\\\\300 - 25x - 25x &= 120x - 10x^2\\\\300 - 50x &= 120x - 10x^2\\\\10x^2 - 120x - 50x + 300 &= 0\\\\10x^2 - 170x +300 &= 0\end[/tex]
Dividing the equation by 10
[tex]\rm x^2 - 17x + 30 = 0[/tex]
On factoring the equation,
[tex]\rm =x^2 - 2x -15x + 30 = 0\\\\=x(x - 2) -15(x - 2)\\\\=(x - 2)(x - 15)[/tex]
The values of x is 2 and 15.
Since speed of current i.e [tex](12 -\rm x)km/h[/tex] cannot be negative, [tex]\rm x = 2[/tex] is the only acceptable value.
Therefore the speed of current is 2 km/h.
Learn more about the topic here:
https://brainly.com/question/2292310