The vector matrix [-3,-5] is rotated at different angles. Match the angles of rotation to the vector matrices they produce.
![The vector matrix 35 is rotated at different angles Match the angles of rotation to the vector matrices they produce class=](https://us-static.z-dn.net/files/d16/bda11f1122b08673a79c43238ab0d574.png)
Answer: The above answer is correct.
Step-by-step explanation: I got this correct on Edmentum.
Answers
[tex]A' = \left[\begin{array}{cc}5.830\\-0.098\end{array}\right][/tex], [tex]\theta = \frac{2\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}-5.657\\-1.414\end{array}\right][/tex], [tex]\theta = \frac{7\pi}{4}[/tex]
[tex]A' = \left[\begin{array}{cc}-2.83\\5.098\end{array}\right][/tex], [tex]\theta = \frac{4\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}5\\-3\end{array}\right][/tex], [tex]\theta = \frac{\pi}{2}[/tex]
This exercise consist in finding the resulting Vector Matrix for each Angle of Rotation and a given Vector Matrix. The result is found by multiplying the given Vector Matrix for a Rotation Matrix, defined below as follows:
[tex]A' = R\cdot A[/tex] (1)
Where:
[tex]A[/tex] - Given vector matrix.
[tex]R[/tex] - Rotation matrix.
[tex]A'[/tex] - Resulting vector matrix.
For 2-dimension Vector Matrices, The Rotation Matrix is defined by the following entity:
[tex]R = \left[\begin{array}{cc}\cos \theta&-\sin \theta\\\sin \theta&\cos \theta\\\end{array}\right][/tex] (2)
Where [tex]\theta[/tex] is the Angle of Rotation, in radians.
Let be [tex]A = \left[\begin{array}{cc}x\\y\end{array}\right][/tex], the resulting vector matrix is found by (1) and (2):
[tex]A' = \left[\begin{array}{cc}\cos \theta&-\sin \theta\\\sin \theta&\cos \theta\end{array}\right] \cdot \left[\begin{array}{cc}x\\y\end{array}\right][/tex]
[tex]A' = \left[\begin{array}{cc}x\cdot \cos \theta - y\cdot \sin \theta\\x\cdot \sin \theta +y\cdot \cos \theta \end{array}\right][/tex]
If we know that [tex]A = \left[\begin{array}{cc}-3\\-5\end{array}\right][/tex], then the resulting vector matrix for each angle is, respectively:
[tex]\theta = \frac{\pi}{4}[/tex]
[tex]A' = \left[\begin{array}{cc}1.414\\-5.657\end{array}\right][/tex]
[tex]\theta = \frac{\pi}{2}[/tex]
[tex]A' = \left[\begin{array}{cc}5\\-3\end{array}\right][/tex]
[tex]\theta = \frac{2\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}5.830\\-0.098\end{array}\right][/tex]
[tex]\theta = \frac{4\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}-2.83\\5.098\end{array}\right][/tex]
[tex]\theta = \frac{5\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}-5.83\\0.098\end{array}\right][/tex]
[tex]\theta = \frac{7\pi}{4}[/tex]
[tex]A' = \left[\begin{array}{cc}-5.657\\-1.414\end{array}\right][/tex]
Therefore, we have the following answers:
[tex]A' = \left[\begin{array}{cc}5.830\\-0.098\end{array}\right][/tex], [tex]\theta = \frac{2\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}-5.657\\-1.414\end{array}\right][/tex], [tex]\theta = \frac{7\pi}{4}[/tex]
[tex]A' = \left[\begin{array}{cc}-2.83\\5.098\end{array}\right][/tex], [tex]\theta = \frac{4\pi}{3}[/tex]
[tex]A' = \left[\begin{array}{cc}5\\-3\end{array}\right][/tex], [tex]\theta = \frac{\pi}{2}[/tex]
Related question: https://brainly.com/question/11815899