Hagrid
contestada

GIVEN:
PB tangent
PV, PU secants

If m VU= 80° and m ST= 40°, then ∠1 =
If m VU= 70° and m ST= 30°, then ∠2 =
If m VB= 60° and m BS = 30°, then ∠3 =
If VS = 9, SP = 12 and UT = 4, then TP =

GIVEN PB tangent PV PU secants If m VU 80 and m ST 40 then 1 If m VU 70 and m ST 30 then 2 If m VB 60 and m BS 30 then 3 If VS 9 SP 12 and UT 4 then TP class=

Respuesta :

Part a) If m VU= 80° and m ST= 40°, then ∠1 =

we know that

The measurement of the external angle is the semi-difference of the arcs it comprises.

so

[tex]Angle (1)=\frac{1}{2}*(80\°-40\°)=20\°[/tex]

therefore

the answer Part a) is

∠1 =[tex]20\°[/tex]

Part b) If m VU= 70° and m ST= 30°, then ∠2 =

we know that

The measure of the internal angle is the semi- sum of the arcs comprising it and its opposite.

so

[tex]Angle (2)=\frac{1}{2}*(70\°+30\°)=50\°[/tex]

the answer Part b) is

∠2 =[tex]50\°[/tex]

Part c) If m VB= 60° and m BS = 30°, then ∠3 =

we know that

The measurement of the external angle is the semi-difference of the arcs it comprises.

so

[tex]Angle (3)=\frac{1}{2}*(60\°-30\°)=15\°[/tex]

therefore

the answer Part c) is

∠3 =[tex]15\°[/tex]

Part d) If VS = 9, SP = 12 and UT = 4, then TP =

we know that

The Intersecting Secants Theorem  states that when two secant lines intersect each other outside a circle, the products of their segments are equal.

so

[tex]PT*PU=PS*PV[/tex]

we have

[tex]PS=12\ units\\PV=PS+VS=12+9=21\ units\\PU=PT+UT=PT+4[/tex]

substitute

[tex]PT*(PT+4)=12*21[/tex]

[tex]PT^{2} +4PT-252=0[/tex]

using a graphing tool------> to resolve the second order equation

see the attached figure

the solution is

[tex]PT=14\ units[/tex]

therefore

the answer Part d) is

[tex]PT=14\ units[/tex]





Ver imagen calculista

Answer:

1= 40

2=50

3=15

TP= 14