The x and y components of the E-field produced by the charge distribution Q at points on the positive x axis is; [tex]E = \frac{\lambda*d\theta}{4\pi \epsilon_{0} r_{0} }(sin\theta i + (cos\theta + 1)j)[/tex]
What is the magnitude of magnetic field?
Let the linear charge density = λ
Let the length of the rod is l and the total charge distributed on the rod is Q. Thus;
[tex]dE = \frac{dQ}{4\pi \epsilon_{0} r^{2} }[/tex]
Thus;
[tex]dE = \frac{\lambda*da}{4\pi \epsilon_{0} x^{2} }[/tex]
cos θ = [tex]\frac{r_{0} }{r}[/tex]
r = r₀ * sec θ
[tex]dE = \frac{\lambda*da}{4\pi \epsilon_{0} r_{0} ^{2} sec^{2}\theta }[/tex]
taking x component and y component gives;
[tex]dE = \frac{\lambda*d\theta}{4\pi \epsilon_{0} r_{0} }(cos\theta i + sin\thetaj)[/tex]
Integrating both sides gives;
[tex]\int\limits^E_0 {E}= \frac{\lambda}{4\pi \epsilon_{0} r_{0} }(\int\limits^\theta _0 { cos\theta d\theta i + \int\limits^\theta _0 sin\theta d\theta j)[/tex]
⇒ [tex]E = \frac{\lambda*d\theta}{4\pi \epsilon_{0} r_{0} }(sin\theta i + (cos\theta + 1)j)[/tex]
Read more about magnitude of magnetic field at; https://brainly.com/question/15246898