Respuesta :

Answer:

[tex]5\sqrt{2}[/tex]

Step-by-step explanation:

Solution 1 (Pythagorean Theorem):

In any right triangle, the Pythagorean Theorem holds true: [tex]a^2+b^2=c^2[/tex], where [tex]c[/tex] is the hypotenuse of the triangle.

From the Isosceles-Base Theorem, the other leg of the triangle (unlabeled) must 5. Therefore, we have:

[tex]5^2+5^2=x^2,\\25+25=x^2,\\x^2=50,\\x=\sqrt{50}=\sqrt{25}\cdot \sqrt{2}=\boxed{5\sqrt{2}}[/tex]

Solution 2 (ratios of a 45-45-90 triangle derived from the Pythagorean Theorem):

In any 45-45-90 triangle, the ratio of the sides will be [tex]x: x:x\sqrt{2}[/tex], where [tex]x\sqrt{2}[/tex] is the hypotenuse. From there, we can see that one of the legs has a length of 5, and thus the hypotenuse will be [tex]\boxed{5\sqrt{2}}[/tex]. (derived from Pythagorean Theorem).

Solution 3 (Law of Sines):

In any triangle, the Law of Sines holds true: [tex]\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R[/tex].

[tex]\frac{5}{\sin 45^{\circ}}=\frac{x}{\sin 90^{\circ}}[/tex], and recall [tex]\sin 90^{\circ}=1[/tex].

[tex]x=\frac{5}{\sin45^{\circ}}=\boxed{5\sqrt{2}}[/tex] (recall [tex]\sin 45^{\circ}=\frac{\sqrt{2}}{2}[/tex])

Solution 4 (basic trig. for right triangles):

In any right triangle, the cosine of an angle is given by its adjacent side divided by the hypotenuse of the triangle.

[tex]\cos45^{\circ}=\frac{5}{x},\\x=\frac{5}{\cos 45^{\circ}}=\boxed{5\sqrt{2}}[/tex] (recall [tex]\cos 45^{\circ}=\frac{\sqrt{2}}{2}[/tex])

Solution 5 (Law of Cosines):

In any triangle, the Law of Cosines holds true: [tex]c^2=a^2+b^2-2ab\cos C[/tex].

Assigning [tex]a=5,\: b=5, \:c=x, \:C=90[/tex], we have:

[tex]c^2=5^2+5^2-2\cdot5\cdot5\cdot\cos 90^{\circ},\\c^2=50,\\c=\sqrt{50}=\sqrt{25}\cdot \sqrt{2}=\boxed{5\sqrt{2}}[/tex](recall [tex]\cos 90^{\circ}=0[/tex])

ACCESS MORE