Considering only the values of [tex]\beta[/tex] for which [tex]\sin \beta \tan \beta \sec \beta \cot \beta[/tex] is defined, which of the following expressions is equivalent to [tex]\sin \beta \tan \beta \sec \beta \cot \beta[/tex]?

a. [tex]\sec \beta \cot \beta[/tex]
b. [tex]\tan \beta[/tex]
c. [tex]\cot \beta \tan \beta[/tex]
d. [tex]\tan \beta \csc \beta \sec \beta[/tex]

Respuesta :

[tex]\large\boxed{Answer:}[/tex]

We will use trigonometric identities to solve this. I will use θ (theta) for the angle.

First of all, we know that cotθ = 1/tanθ. This is a trigonometric identity.

We can replace cotθ in the expression with 1/tanθ.

[tex]sin\theta tan\theta sec\theta \frac{1}{tan\theta}[/tex]

Simplify: 1/tanθ * tanθ = tanθ/tanθ = 1

So now, we have:

[tex]sin\theta sec\theta[/tex]

Next, we also know that secθ = 1/cosθ. This is another trigonometric identity.

We can replace secθ with 1/cosθ in our expression.

[tex]sin\theta \frac{1}{cos\theta}[/tex]

Simplify:

[tex]\frac{sin\theta}{cos\theta}[/tex]

Our third trigonometric identity that we will use is tanθ = sinθ/cosθ.

We can replace sinθ/cosθ with tanθ.

Now we have as our final answer:

[tex]\large\boxed{b.\ tan\theta}[/tex]

Hope this helps!

Nayefx

Answer:

[tex] \huge \boxed{ \boxed{ \red{b) \tan( \beta ) }}}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • trigonometry
  • PEMDAS

given:

  • [tex]\sin \beta \tan \beta \sec \beta \cot \beta[/tex]

tips and formulas:

  • [tex] \tan( \theta) = \dfrac{ \sin( \theta) }{ \cos( \theta) } [/tex]
  • [tex] \cot( \theta) = \dfrac{ \cos( \theta) }{ \sin( \theta) } [/tex]
  • [tex] \sec( \theta) = \dfrac{1}{ \cos( \theta) } [/tex]

let's solve:

  1. [tex] \sf rewrite \: \tan( \beta ) \: as \: \dfrac{ \sin( \beta ) }{ \cos( \beta ) } : \\\sin (\beta ) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \sec (\beta ) \cdot\cot (\beta)[/tex]
  2. [tex] \sf rewrite \: \sec( \beta ) \: as \: \dfrac{1 }{ \cos( \beta ) } : \\\sin (\beta) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot\cot (\beta)[/tex]
  3. [tex] \sf rewrite \: \cot( \beta ) \: as \: \dfrac{ \cos( \beta ) }{ \sin( \beta ) } : \\\sin (\beta) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \dfrac{ \cos( \beta ) }{ \sin( \beta ) }[/tex]
  4. [tex] \sf \: cancel \: sin : \\\sin (\beta) \cdot\frac{ \cancel{\sin( \beta ) }}{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \dfrac{ \cos( \beta ) }{ \cancel{\sin( \beta ) }} \\ \sin (\beta) \cdot\frac{ 1 }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \cos( \beta ) \\ [/tex]
  5. [tex] \sf cancel \: cos : \\ \sin (\beta) \cdot\frac{ 1}{ \cos( \beta ) } \cdot \frac{1}{ \cancel{ \cos( \beta )} } \cdot \: \cancel{ \cos( \beta ) } \\ \\ \sin( \beta ) \: \cdot \: \dfrac{ 1 }{ \cos( \beta ) } [/tex]
  6. [tex] \sf \: simplify \: multipication : \\ \dfrac{ \sin( \beta ) }{ \cos( \beta ) } [/tex]
  7. [tex] \sf use \: \frac{ \sin( \beta ) }{ \cos( \beta ) } = \tan( \beta ) \: identity : \\ \therefore \: \tan( \beta ) [/tex]

ACCESS MORE