Respuesta :
[tex]\large\boxed{Answer:}[/tex]
We will use trigonometric identities to solve this. I will use θ (theta) for the angle.
First of all, we know that cotθ = 1/tanθ. This is a trigonometric identity.
We can replace cotθ in the expression with 1/tanθ.
[tex]sin\theta tan\theta sec\theta \frac{1}{tan\theta}[/tex]
Simplify: 1/tanθ * tanθ = tanθ/tanθ = 1
So now, we have:
[tex]sin\theta sec\theta[/tex]
Next, we also know that secθ = 1/cosθ. This is another trigonometric identity.
We can replace secθ with 1/cosθ in our expression.
[tex]sin\theta \frac{1}{cos\theta}[/tex]
Simplify:
[tex]\frac{sin\theta}{cos\theta}[/tex]
Our third trigonometric identity that we will use is tanθ = sinθ/cosθ.
We can replace sinθ/cosθ with tanθ.
Now we have as our final answer:
[tex]\large\boxed{b.\ tan\theta}[/tex]
Hope this helps!
Answer:
[tex] \huge \boxed{ \boxed{ \red{b) \tan( \beta ) }}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- trigonometry
- PEMDAS
given:
- [tex]\sin \beta \tan \beta \sec \beta \cot \beta[/tex]
tips and formulas:
- [tex] \tan( \theta) = \dfrac{ \sin( \theta) }{ \cos( \theta) } [/tex]
- [tex] \cot( \theta) = \dfrac{ \cos( \theta) }{ \sin( \theta) } [/tex]
- [tex] \sec( \theta) = \dfrac{1}{ \cos( \theta) } [/tex]
let's solve:
- [tex] \sf rewrite \: \tan( \beta ) \: as \: \dfrac{ \sin( \beta ) }{ \cos( \beta ) } : \\\sin (\beta ) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \sec (\beta ) \cdot\cot (\beta)[/tex]
- [tex] \sf rewrite \: \sec( \beta ) \: as \: \dfrac{1 }{ \cos( \beta ) } : \\\sin (\beta) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot\cot (\beta)[/tex]
- [tex] \sf rewrite \: \cot( \beta ) \: as \: \dfrac{ \cos( \beta ) }{ \sin( \beta ) } : \\\sin (\beta) \cdot\frac{ \sin( \beta ) }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \dfrac{ \cos( \beta ) }{ \sin( \beta ) }[/tex]
- [tex] \sf \: cancel \: sin : \\\sin (\beta) \cdot\frac{ \cancel{\sin( \beta ) }}{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \dfrac{ \cos( \beta ) }{ \cancel{\sin( \beta ) }} \\ \sin (\beta) \cdot\frac{ 1 }{ \cos( \beta ) } \cdot \frac{1}{ \cos( \beta ) } \cdot \: \cos( \beta ) \\ [/tex]
- [tex] \sf cancel \: cos : \\ \sin (\beta) \cdot\frac{ 1}{ \cos( \beta ) } \cdot \frac{1}{ \cancel{ \cos( \beta )} } \cdot \: \cancel{ \cos( \beta ) } \\ \\ \sin( \beta ) \: \cdot \: \dfrac{ 1 }{ \cos( \beta ) } [/tex]
- [tex] \sf \: simplify \: multipication : \\ \dfrac{ \sin( \beta ) }{ \cos( \beta ) } [/tex]
- [tex] \sf use \: \frac{ \sin( \beta ) }{ \cos( \beta ) } = \tan( \beta ) \: identity : \\ \therefore \: \tan( \beta ) [/tex]