In kite PQRS, m_OPO = 50° and m_ORO = 70°. Find m2PSR
![In kite PQRS mOPO 50 and mORO 70 Find m2PSR class=](https://us-static.z-dn.net/files/d19/1601381a93b0e959fb3a7397c18aa90e.png)
Answer:
m<PSR = 60°
Step-by-step explanation:
Given:
m<OPQ = 50°
m<ORQ = 70°
Required:
m<PSR
Solution:
m<PQR + m<OPQ + m<ORQ = 180° (Sum of triangle)
m<PQR + 50 + 70 = 180 (Substitution)
m<PQR + 120 = 180
m<PQR = 180 - 120
m<PQR = 60°
One of the properties of a kite states that the angles where the unequal sides meets are congruent to each other. Therefore:
m<PSR = m<PQR
m<PSR = 60° (substitution)