Respuesta :

Space

Answer:

[tex]\displaystyle d \approx 3.6[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Reading a Cartesian Plane

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Find points from graph.

Point A(-2, 1)

Point B(1, -1)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                        [tex]\displaystyle d = \sqrt{(1+2)^2+(-1-1)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Add/Subtract:                                        [tex]\displaystyle d = \sqrt{(3)^2+(-2)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponents:                                                   [tex]\displaystyle d = \sqrt{9+4}[/tex]
  4. [Distance] [√Radical] Add:                                                                             [tex]\displaystyle d = \sqrt{13}[/tex]
  5. [Distance] [√Radical] Evaluate:                                                                      [tex]\displaystyle d = 3.60555127546[/tex]
  6. [Distance] Round:                                                                                            [tex]\displaystyle d \approx 3.6[/tex]

Answer:

3.6 units

Step-by-step explanation:

Point A --> [tex]x_{1} \\[/tex] = -2 , [tex]y_{1}[/tex] = 1

Point B --> [tex]x_{2}[/tex] = 1   , [tex]y_{2}[/tex] = -1

AB =

[tex]\sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2 } \\\sqrt{[1 - (-2)]^2 + [(-1) - 1]^2} \\\sqrt{3^2 + (-2)^2} \\\sqrt{9 + 4} \\ \sqrt{13} \\3.605[/tex]

distance between AB can be rounded to 3.6 units

Hope it helps.

ACCESS MORE