Answer:
The final temperature of both substances at thermal equilibrium is 17.3°C
Explanation:
To calculate the final temperature of both substances at thermal equilibrium -:
First , we calculate the heat of A1 cube as follows -
q= mSΔT
(where q = heat of the cube , m = mass of cube , S= specific heat of cube {0.902j/g°C}, T = Temperature )
Putting the values given in the question ,
[tex]q= 32.5g\times0.902\j/g[/tex]°[tex]C[/tex][tex]\times(T_f-45.8[/tex]°[tex]C)[/tex]
[tex]29.315\times(T_f-45.8)J[/tex]
Now , calculate the heat of water -
q=mSΔT
Putting values from the question ,
[tex]q=105.3g\times4.18j/g[/tex]°[tex]C[/tex][tex]\times (T_f-15.4[/tex]°[tex]C)[/tex]
=[tex]440.154\times(T_f-15.4)J[/tex]
Now ,
Heat lost by water A1= Heat gained by water [negative sign about heat lost]
[tex]-29.315\times(T_f-45.8)J[/tex] [tex]=440.154\times(T_f-15.4)J[/tex]
[tex]\frac{-(T_f-45.8)J}{T_f-15.4)J} =\frac{440.154}{29.315}=15.0[/tex]
[tex]-T_f+45.8[/tex]°[tex]C=15T_f-231.2[/tex]°[tex]C[/tex]
[tex](45.8+231.2)[/tex]°[tex]C[/tex]=[tex]16T_f[/tex]
[tex]16T_f=277.03[/tex]°[tex]C[/tex]
[tex]T_f=\frac{277.03}{16}[/tex] = 17.3°C
Therefore , the final temperature of both substances at thermal equilibrium is 17.3°C