Answer:
[tex]S = (4,-9)[/tex]
Step-by-step explanation:
Given
[tex]T = (0,5)[/tex]
[tex]Midpoint = (2,-2)[/tex]
Required
Find S
Midpoint is calculated as:
[tex]Midpoint = 0.5(x_1 + x_2,y_1+y_2)[/tex]
So, we have:
[tex](2,-2)= 0.5(0+ x_2,5+y_2)[/tex]
Where x2 and y2 are the coordinates of S
Multiply through by 2
[tex]2 * (2,-2)= 2 * 0.5(0+ x_2,5+y_2)[/tex]
[tex](4,-4)= (0+ x_2,5+y_2)[/tex]
[tex](4,-4)= (x_2,5+y_2)[/tex]
By comparison:
[tex]x_2 = 4[/tex]
[tex]5 + y_2 = -4[/tex]
[tex]y_2 = -4-5[/tex]
[tex]y_2 = -9[/tex]
So:
[tex]S = (4,-9)[/tex]