Respuesta :

Given:

The function is:

[tex]f(x)=x^3-x[/tex]

To find:

The average of change of f(x) over the interval [1,5].

Solution:

We have,

[tex]f(x)=x^3-x[/tex]

At x=1, we have

[tex]f(1)=(1)^3-(1)[/tex]

[tex]f(1)=1-1[/tex]

[tex]f(1)=0[/tex]

At x=5, we have

[tex]f(5)=(5)^3-(5)[/tex]

[tex]f(5)=125-5[/tex]

[tex]f(5)=120[/tex]

The average of change of f(x) over the interval [a,b] is

[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]

Now, the average of change of f(x) over the interval [1,5] is

[tex]m=\dfrac{f(5)-f(1)}{5-1}[/tex]

[tex]m=\dfrac{120-0}{4}[/tex]

[tex]m=\dfrac{120}{4}[/tex]

[tex]m=30[/tex]

Therefore, the average of change of f(x) over the interval [1,5] is 30.

ACCESS MORE