Given:
The function is:
[tex]f(x)=x^3-x[/tex]
To find:
The average of change of f(x) over the interval [1,5].
Solution:
We have,
[tex]f(x)=x^3-x[/tex]
At x=1, we have
[tex]f(1)=(1)^3-(1)[/tex]
[tex]f(1)=1-1[/tex]
[tex]f(1)=0[/tex]
At x=5, we have
[tex]f(5)=(5)^3-(5)[/tex]
[tex]f(5)=125-5[/tex]
[tex]f(5)=120[/tex]
The average of change of f(x) over the interval [a,b] is
[tex]m=\dfrac{f(b)-f(a)}{b-a}[/tex]
Now, the average of change of f(x) over the interval [1,5] is
[tex]m=\dfrac{f(5)-f(1)}{5-1}[/tex]
[tex]m=\dfrac{120-0}{4}[/tex]
[tex]m=\dfrac{120}{4}[/tex]
[tex]m=30[/tex]
Therefore, the average of change of f(x) over the interval [1,5] is 30.