Answer:
[tex](x,y) = (-1,0)[/tex]
Step-by-step explanation:
Given
[tex](x+1)^2 = -8(y-2)[/tex]
Required
The coordinates of the focus
First, write the expression in form of: [tex]y=a(x-h)^2+k[/tex]
[tex](x+1)^2 = -8(y-2)[/tex]
[tex](x+1)^2 = -8y + 16[/tex]
[tex]-8y + 16 = (x+1)^2[/tex]
Subtract 16 from both sides
[tex]-8y = (x+1)^2 - 16[/tex]
Divide through by -8
[tex]y = -\frac{1}{8}(x+1)^2 - \frac{16}{-8}[/tex]
[tex]y = -\frac{1}{8}(x+1)^2 +2[/tex]
In this case:
[tex]a = -\frac{1}{8}[/tex]
[tex]-h = 1[/tex] [tex]h = -1[/tex]
[tex]k = 2[/tex]
The focus of the parabola is:
[tex](x,y) = (h,k + \frac{1}{4a})[/tex]
This gives:
[tex](x,y) = (-1,2 + \frac{1}{4*-\frac{1}{8}})[/tex]
[tex](x,y) = (-1,2 + \frac{1}{-\frac{1}{2}})[/tex]
[tex](x,y) = (-1,2 -2)[/tex]
[tex](x,y) = (-1,0)[/tex]