Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a diameter of 12 feet and a height of 13 feet. Container B has a diameter of 10 feet and a height of 16 feet. Container A is full of water and the water is pumped into Container B until Container B is completely full.

After the pumping is complete, what is the volume of water remaining in Container A, to the nearest tenth of a cubic foot?

Respuesta :

Answer:

Step-by-step explanation:

The student needs to check all algebraic and mathmatical calculations for errors and typos.  I'm old and have been prone to making mistakes.

Cylinder A DIAMETER 12 ft and Height 13 ft

Cylinder B DIAMETER 10 ft and Height 16 ft

After pumping How much water remains in cylinder A

Volume of a cylinder  =  π(radius)²h is the normal form since they provided the diameter I will use     Volume of a cylinder  =  π(diameter/2)²h

Water remaining in A = Volume of A  - Volume of B   =  

VolA  - VolB  =  π(D for A/2)²H of A  -   π(D for B/2)²H of B

             writing if a little more condensed

VolA  - VolB  =  π(D for A/2)²H of A  -   π(D for B/2)²H of B

    Va - Vb    =   π(Da/2)²Ha  -   π(Db/2)²Hb

                     =  π [(Da²/2²)Ha - (Db²/2²)Hb]      factored out the π

                     =  π/4 [ Da²Ha  - Db²Hb]              factored out the (1/2)²

             I can't think of any other algebraic steps

Va - Vb = Water Remaining in Container A  =  π/4 [ Da²Ha  - Db²Hb]            

            =  π/4 [ (12²)(13)  - (10²)(16)]

            =  π/4 [ (144)(13)  - (100)(16)]

            =  π/4 [ 1872 - 1600 ]

            =  π/4 [272]

            =  π [ 272/4 ]  

            =  π [ 136 / 2]

            =  π [ 68 ]

            =  π (68)

            =  213.6  ft³             rounded to the nearest tenth

I checking my answer by using  V = πr²h         r = d/2

           Va - Vb = π [ra²ha - rb²hb]

                         = π [6²(13)  - 5²(16)]

                         = π [(36)(13) - (25)(16)]

                         = π [ 468 - 400]

                         = 68 π

                         = 213.6 ft³         I got the same answer

       

            =  π

test

   

ACCESS MORE