Respuesta :
Answer:
C. [tex]a_3_0=-101[/tex]
Step-by-step explanation:
We have the arithmetic sequence 15,11,7,3,-1,...
Where,
[tex]a_1=15,\\a_2=11,\\a_3=7,\\a_4=3,\\a_5=-1,...[/tex]
You can see that the common difference d=(-4), or if you couldn't see the common difference you can calculate it with the formula:
[tex]d=a_n_+_1-a_n[/tex]
Then,
[tex]d=a_2-a_1\\d=11-15\\d=(-4)[/tex]
Now to find the 30th term of the arithmetic sequence we can use the following formula:
[tex]a_n=a_1+(n-1).d[/tex]
Replacing n=30, [tex]a_1=15[/tex] and d=(-4):
[tex]a_n=a_1+(n-1).d\\a_3_0=15+(30-1)(-4)\\a_3_0=15-29.4\\a_3_0=15-116\\a_3_0=-101[/tex]
Then the correct option is C. [tex]a_3_0=-101[/tex]