Respuesta :

cairde

Answer:

16[tex]\sqrt{5}[/tex]+4[tex]\sqrt{15}[/tex] or 51.26902

Step-by-step explanation:

Consider one of the smaller, right-angled triangles within the main triangle, and use sine to find the hypotenuse of the small triangles:

sinA=opposite/hypotenuse

sin60=4[tex]\sqrt{15}[/tex]/hypotenuse

hypotenuse=[tex]\frac{4\sqrt{15} }{\frac{\sqrt{3} }{2} }[/tex]

hypotenuse=8([tex]\frac{\sqrt{15} }{\sqrt{3} }[/tex])

hypotenuse=8[tex]\sqrt{5}[/tex]

So the left and right hand sides of the larger triangle are both 8[tex]\sqrt{5}[/tex] respectively.

To find the base, once again consider the smaller triangle, and this time, use pythagorus:

a²=b²+c²

(8[tex]\sqrt{5}[/tex])²=(4[tex]\sqrt{15}[/tex])²+c²

320=240+c²

80=c²

c=4[tex]\sqrt{15}[/tex]

So the perimeter is 8[tex]\sqrt{5}[/tex]+8[tex]\sqrt{5}[/tex]+4[tex]\sqrt{15}[/tex]=16[tex]\sqrt{5}[/tex]+4[tex]\sqrt{15}[/tex]=51.26902