Respuesta :
Answer:
[tex](a)[/tex] [tex]R(20) = 1400[/tex]
[tex](b)[/tex] [tex]Max(x) = 45[/tex]
[tex](c)[/tex] [tex]x = 40[/tex] or [tex]x = 50[/tex]
Step-by-step explanation:
Given
[tex]R(x) = x(90 - x)[/tex]
Solving (a): R(20)
Substitute 20 for x
[tex]R(20) = 20 * (90 - 20)[/tex]
[tex]R(20) = 20 * 70[/tex]
[tex]R(20) = 1400[/tex]
Interpret: The cost of 20 radios is $1400
Solving (b): Maximum radio that maximizes the function
[tex]R(x) = x(90 - x)[/tex]
Open bracket
[tex]R(x)=90x - x^2[/tex]
[tex]R(x)=- x^2 + 90x[/tex]
To get the maximum, we make use of:
[tex]Max(x) = \frac{-b}{2a}[/tex]
Where: [tex]a = -1[/tex] [tex]b = 90[/tex]
So:
[tex]Max(x) = \frac{-90}{2*-1}[/tex]
[tex]Max(x) = \frac{-90}{-2}[/tex]
[tex]Max(x) = 45[/tex]
The number of radio that maximizes the function is 45
Solving (c): Number of radios that amounts to $2000
[tex]R(x) = x(90 - x)[/tex]
Substitute 2000 for R(x)
[tex]2000 = x(90 - x)[/tex]
Open bracket
[tex]2000 = 90x - x^2[/tex]
Express as quadratic
[tex]x^2 - 90x + 2000 = 0[/tex]
Expand
[tex]x^2 - 40x - 50x + 2000 = 0[/tex]
Factorize:
[tex]x(x - 40) - 50(x - 40) = 0[/tex]
[tex](x - 40)(x - 50) = 0[/tex]
This gives
[tex]x = 40[/tex] or [tex]x = 50[/tex]
40 or 50 items when sold will amount to $2000