The revenue R in dollars received from selling radios is () = (90 − ). a) Evaluate (20) and interpret the result. b) What number of radios sold maximize revenue? c) What number of radios should be sold for revenue to be $2000 or more?

Respuesta :

Answer:

[tex](a)[/tex] [tex]R(20) = 1400[/tex]

[tex](b)[/tex] [tex]Max(x) = 45[/tex]

[tex](c)[/tex] [tex]x = 40[/tex] or [tex]x = 50[/tex]

Step-by-step explanation:

Given

[tex]R(x) = x(90 - x)[/tex]

Solving (a): R(20)

Substitute 20 for x

[tex]R(20) = 20 * (90 - 20)[/tex]

[tex]R(20) = 20 * 70[/tex]

[tex]R(20) = 1400[/tex]

Interpret: The cost of 20 radios is $1400

Solving (b): Maximum radio that maximizes the function

[tex]R(x) = x(90 - x)[/tex]

Open bracket

[tex]R(x)=90x - x^2[/tex]

[tex]R(x)=- x^2 + 90x[/tex]

To get the maximum, we make use of:

[tex]Max(x) = \frac{-b}{2a}[/tex]

Where: [tex]a = -1[/tex]     [tex]b = 90[/tex]    

So:

[tex]Max(x) = \frac{-90}{2*-1}[/tex]

[tex]Max(x) = \frac{-90}{-2}[/tex]

[tex]Max(x) = 45[/tex]

The number of radio that maximizes the function is 45

Solving (c): Number of radios that amounts to $2000

[tex]R(x) = x(90 - x)[/tex]

Substitute 2000 for R(x)

[tex]2000 = x(90 - x)[/tex]

Open bracket

[tex]2000 = 90x - x^2[/tex]

Express as quadratic

[tex]x^2 - 90x + 2000 = 0[/tex]

Expand

[tex]x^2 - 40x - 50x + 2000 = 0[/tex]

Factorize:

[tex]x(x - 40) - 50(x - 40) = 0[/tex]

[tex](x - 40)(x - 50) = 0[/tex]

This gives

[tex]x = 40[/tex] or [tex]x = 50[/tex]

40 or 50 items when sold will amount to $2000