Respuesta :
Answer:
B. y = x² + 1
General Formulas and Concepts:
Symbols
- e (Euler's number) ≈ 2.7182
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Functions
Algebra II
- Logarithms - ln and e
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Slope Fields
Solving Differentials - Integrals
Integration Constant C
U-Substitution
ln Integration: [tex]\displaystyle \int {\frac{1}{x}} \, dx = ln|x| + C[/tex]
Step-by-step explanation:
*Note:
When solving differential equations in slope fields, disregard the integration constant C for variable y.
Step 1: Define
[tex]\displaystyle \frac{dy}{dx} = \frac{2xy}{x^2 + 1}[/tex]
Point (0, 1)
Step 2: Rewrite Differential
Rewrite Leibniz Notation using Separation of Variables.
- [Separation of Variables] Isolate x's together: [tex]\displaystyle dy = \frac{2xy}{x^2 + 1}dx[/tex]
- [Separation of Variables] Isolate y's together: [tex]\displaystyle \frac{1}{y}dy = \frac{2x}{x^2 + 1}dx[/tex]
Step 3: Integrate Pt. 1
Solving general form of differential using integration.
- [Differential] Integrate both sides: [tex]\displaystyle \int {\frac{1}{y}} \, dy = \int {\frac{2x}{x^2 + 1}} \, dx[/tex]
- [Left Integral] ln Integration: [tex]\displaystyle ln|y| = \int {\frac{2x}{x^2 + 1}} \, dx[/tex]
Step 4: Identify Variables
Set up u-substitution for right integral.
u = x² + 1
du = 2xdx
Step 5: Integrate Pt. 2
- [Right Integral] U-Substitution: [tex]\displaystyle ln|y| = \int {\frac{1}{u}} \, du[/tex]
- [Right Integral] ln Integration: [tex]\displaystyle ln|y| = ln|u| + C[/tex]
- Back-Substitute: [tex]\displaystyle ln|y| = ln|x^2 + 1| + C[/tex]
- [Equality Property] Raise e on both sides: [tex]\displaystyle e^{ln|y|} = e^{ln|x^2 + 1| + C}[/tex]
- Simplify: [tex]\displaystyle |y| = C|x^2 + 1|[/tex]
General Form: [tex]\displaystyle |y| = C|x^2 + 1|[/tex]
Step 6: Solve Particular Solution
Since both sides have absolute value, assume that the particular solution will be positive.
- Substitute in point [General Form]: [tex]\displaystyle |1| = C|(0)^2 + 1|[/tex]
- [Particular] |Absolute Value| Evaluate exponents: [tex]\displaystyle |1| = C|1|[/tex]
- [Particular] Evaluate absolute values: [tex]\displaystyle 1 = C[/tex]
- [Particular] Rewrite: [tex]\displaystyle C = 1[/tex]
Substituting integration constant C into the general form:
Particular Solution: [tex]\displaystyle y = x^2 + 1[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Differentials and Slope Fields
Book: College Calculus 10e