Respuesta :

Space

Answer:

B. y = x² + 1

General Formulas and Concepts:

Symbols

  • e (Euler's number) ≈ 2.7182

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions

Algebra II

  • Logarithms - ln and e

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Slope Fields

Solving Differentials - Integrals

Integration Constant C

U-Substitution

ln Integration: [tex]\displaystyle \int {\frac{1}{x}} \, dx = ln|x| + C[/tex]

Step-by-step explanation:

*Note:

When solving differential equations in slope fields, disregard the integration constant C for variable y.

Step 1: Define

[tex]\displaystyle \frac{dy}{dx} = \frac{2xy}{x^2 + 1}[/tex]

Point (0, 1)

Step 2: Rewrite Differential

Rewrite Leibniz Notation using Separation of Variables.

  1. [Separation of Variables] Isolate x's together:                                             [tex]\displaystyle dy = \frac{2xy}{x^2 + 1}dx[/tex]
  2. [Separation of Variables] Isolate y's together:                                             [tex]\displaystyle \frac{1}{y}dy = \frac{2x}{x^2 + 1}dx[/tex]

Step 3: Integrate Pt. 1

Solving general form of differential using integration.

  1. [Differential] Integrate both sides:                                                                 [tex]\displaystyle \int {\frac{1}{y}} \, dy = \int {\frac{2x}{x^2 + 1}} \, dx[/tex]
  2. [Left Integral] ln Integration:                                                                           [tex]\displaystyle ln|y| = \int {\frac{2x}{x^2 + 1}} \, dx[/tex]

Step 4: Identify Variables

Set up u-substitution for right integral.

u = x² + 1

du = 2xdx

Step 5: Integrate Pt. 2

  1. [Right Integral] U-Substitution:                                                                       [tex]\displaystyle ln|y| = \int {\frac{1}{u}} \, du[/tex]
  2. [Right Integral] ln Integration:                                                                        [tex]\displaystyle ln|y| = ln|u| + C[/tex]
  3. Back-Substitute:                                                                                             [tex]\displaystyle ln|y| = ln|x^2 + 1| + C[/tex]
  4. [Equality Property] Raise e on both sides:                                                    [tex]\displaystyle e^{ln|y|} = e^{ln|x^2 + 1| + C}[/tex]
  5. Simplify:                                                                                                           [tex]\displaystyle |y| = C|x^2 + 1|[/tex]

General Form: [tex]\displaystyle |y| = C|x^2 + 1|[/tex]

Step 6: Solve Particular Solution

Since both sides have absolute value, assume that the particular solution will be positive.

  1. Substitute in point [General Form]:                                                                [tex]\displaystyle |1| = C|(0)^2 + 1|[/tex]
  2. [Particular] |Absolute Value| Evaluate exponents:                                        [tex]\displaystyle |1| = C|1|[/tex]
  3. [Particular] Evaluate absolute values:                                                           [tex]\displaystyle 1 = C[/tex]
  4. [Particular] Rewrite:                                                                                        [tex]\displaystyle C = 1[/tex]

Substituting integration constant C into the general form:

Particular Solution: [tex]\displaystyle y = x^2 + 1[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e

ACCESS MORE