Respuesta :

Answer:

Among the four choices, [tex](x + 5)[/tex] is the only one that is not a linear factor of this polynomial function.

Step-by-step explanation:

Let [tex]a[/tex] denote some constant. A linear factor of the form [tex](x - a)[/tex] is a factor of a polynomial [tex]f(x)[/tex] if and only if [tex]f(a) = 0[/tex] (that is: replacing all [tex]x[/tex] in the polynomial [tex]f(x) \![/tex] with the constant [tex]a\![/tex] would give this polynomial a value of [tex]0[/tex].)

For example, in the second linear factor [tex](x - 2)[/tex], the value of the constant is [tex]a = 2[/tex]. Verify that the value of [tex]f(2)[/tex] is indeed [tex]0[/tex]. (In other words, replacing all [tex]x[/tex] in the polynomial [tex]f(x) \![/tex] with the constant [tex]2[/tex] should give this polynomial a value of [tex]0\![/tex].)

[tex]\begin{aligned}f(2) &= 2^3 - 5\times 2^2 - 4 \times 2 + 20 \\ &= 8 - 20 - 8 + 20 \\ &= 0 \end{aligned}[/tex].

Hence, [tex](x - 2)[/tex] is indeed a linear factor of polynomial [tex]f(x)[/tex].

Similarly, it could be verified that [tex](x - 5)[/tex] and [tex](x + 2)[/tex] are also linear factors of this polynomial function.

Rewrite the first linear factor [tex](x + 5)[/tex] in the form [tex](x - a)[/tex] for some constant [tex]a[/tex]: [tex](x + 5) = (x - (-5))[/tex], where [tex]a = -5[/tex].

Calculate the value of [tex]f(5)[/tex].

[tex]\begin{aligned}f(5) &= (-5)^3 - 5\times (-5)^2 - 4 \times (-5) + 20 \\ &= (-125) - 125 + 20 + 20 \\ &= -210\end{aligned}[/tex].

[tex]f(5) \ne 0[/tex] implies that [tex](x - (-5))[/tex] (which is equivalent to [tex](x + 5)[/tex]) isn't a linear factor of this polynomial function.

ACCESS MORE