Respuesta :

Given:

Diagonal of a square = 24 inches

To find:

The perimeter of the given square.

Solution:

Let a be the edge of the square.

Then, the diagonal of the square is

[tex]d=\sqrt{2}a[/tex]

Diagonal of a square = 24 inches

[tex]24=\sqrt{2}a[/tex]

[tex]\dfrac{24}{\sqrt{2}}=a[/tex]

[tex]\dfrac{24}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}=a[/tex]

[tex]\dfrac{24\sqrt{2}}{2}=a[/tex]

[tex]12\sqrt{2}=a[/tex]

The perimeter of the square.

[tex]Perimeter=4a[/tex]

[tex]Perimeter=4(12\sqrt{2})[/tex]

[tex]Perimeter=48\sqrt{2}[/tex]

Therefore, the perimeter of the square is [tex]48\sqrt{2}[/tex].

Otras preguntas