Respuesta :
Answer:
k = - 9
Step-by-step explanation:
Since the triangle is right- angled at Q then PQ is perpendicular to RQ
Calculate the slope of PQ using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = P(1, 4) and (x₂, y₂ ) = Q(- 3, - 4)
[tex]m_{PQ}[/tex] = [tex]\frac{-4-4}{-3-1}[/tex] = [tex]\frac{-8}{-4}[/tex] = 2
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{2}[/tex] , thus
[tex]m_{RQ}[/tex] = - [tex]\frac{1}{2}[/tex]
Calculate the slope of RQ and equate to - [tex]\frac{1}{2}[/tex]
[tex]m_{RQ}[/tex] = [tex]\frac{k+4}{7+3}[/tex] = - [tex]\frac{1}{2}[/tex] , that is
[tex]\frac{k+4}{10}[/tex] = - [tex]\frac{1}{2}[/tex] ( multiply both sides by 10 )
k + 4 = - 5 ( subtract 4 from both sides )
k = - 9
The right-angled triangle PQR has two perpendicular sides PQ and QR, such that the value of k is -9
Given that:
[tex]P =(1,4)[/tex]
[tex]Q = (-3,-4)[/tex]
[tex]R = (7,k)[/tex]
Calculate the slope of PQ using:
[tex]m_1 = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m_1 = \frac{-4-4}{-3-1}[/tex]
[tex]m_1 = \frac{-8}{-4}[/tex]
[tex]m_1=2[/tex]
Calculate the slope of QR using:
[tex]m_2 = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
[tex]m_2 = \frac{k--4}{7--3}[/tex]
[tex]m_2 = \frac{k+4}{7+3}[/tex]
[tex]m_2 = \frac{k+4}{10}[/tex]
Because the triangle is right-angled at Q, then sides PQ and QR are perpendicular.
The relationship between perpendicular sides is:
[tex]m_1 \times m_2 = -1[/tex]
So, we have:
[tex]2 \times (\frac{k + 4}{10}) = -1[/tex]
[tex]\frac{k + 4}{5} = -1[/tex]
Multiply through by 5
[tex]k +4 = -5[/tex]
Subtract 4 from both sides
[tex]k = -9[/tex]
Hence, the value of k is -9
Read more about right-angled triangles at:
https://brainly.com/question/3770177