Simplify the radical expression.

2√10 . 3√12


A.12√60
B.5√120
C.12√30
D.6√120


Simplify the radical expression.

√14q . 2√4q

A.3√56q
B.4q√14
C.2√56q^2
D.4√14q^2



Simplify the radical expression by rationalizing the denominator.


4/√11

A.11√4
B.4√11
C.4√11/11
D.√121/11

Respuesta :

Answer:

1) D. [tex]6\sqrt{120}[/tex], 2) C. [tex]2\sqrt{56}q^{2}[/tex], 3) C. [tex]\frac{4\sqrt{11}}{11}[/tex]

Step-by-step explanation:

1) We proceed to simplify the expression given in statement:

(i) [tex]2\sqrt{10}\cdot 3\sqrt{12}[/tex] Given

(ii) [tex](3\cdot 2)\cdot (\sqrt{10}\cdot \sqrt{12})[/tex] Commutative and associative properties

(iii) [tex](3\cdot 2)\cdot (10^{0.5}\cdot 12^{0.5})[/tex] Definition of square root.

(iv) [tex]6\cdot (10\cdot 12)^{0.5}[/tex] Definition of multiplication/[tex]a^{c}\cdot b^{c} = (a\cdot b)^{c}[/tex]

(v) [tex]6\sqrt{120}[/tex] Definition of multiplication/Definition of square root/Result

Answer: D

2) We proceed to simplify the expression given in statement:

(i) [tex]\sqrt{14}q \cdot 2\sqrt{4}q[/tex] Given

(ii) [tex]2\cdot (\sqrt{14}\cdot \sqrt{4})\cdot (q\cdot q)[/tex] Commutative and associative properties

(iii) [tex]2\cdot (14^{0.5}\cdot 4^{0.5})\cdot q^{2}[/tex] Definition of square root/Definition of power.

(iv) [tex]2\cdot (14\cdot 4)^{0.5}\cdot q^{2}[/tex]    [tex]a^{c}\cdot b^{c} = (a\cdot b)^{c}[/tex]

(v) [tex]2\sqrt{56}q^{2}[/tex] Definition of multiplication/Definition of square root/Result

Answer: C

3) We proceed to simplify the expression given in statement:

(i) [tex]\frac{4}{\sqrt{11}}[/tex] Given

(ii) [tex]\frac{4}{\sqrt{11}}\cdot \frac{\sqrt{11}}{\sqrt{11}}[/tex] Modulative property/Existence of multiplicative inverse.

(iii) [tex]\frac{4\sqrt{11}}{\sqrt{11}\cdot \sqrt{11}}[/tex]  [tex]\frac{a}{b}\times \frac{c}{d} = \frac{a\cdot c}{b\cdot d}[/tex]

(iv) [tex]\frac{4\sqrt{11}}{11^{0.5}\cdot 11^{0.5}}[/tex] Definition of square root.

(v) [tex]\frac{4\sqrt{11}}{11}[/tex] [tex]a^m\cdot a^{n} = a^{m+n}[/tex]/Result

Answer: C

ACCESS MORE