Given:
In ΔNOP, the measure of ∠P=90°, PN = 95 feet, and OP = 31 feet.
To find:
The measure of ∠O to the nearest degree.
Solution:
In a right angle triangle,
[tex]\tan \theta=\dfrac{Opposite}{Adjacent}[/tex]
In triangle NOP,
[tex]\tan O=\dfrac{PN}{OP}[/tex]
[tex]\tan O=\dfrac{95}{31}[/tex]
[tex]O=tan^{-1}\dfrac{95}{31}[/tex]
[tex]O=71.92768[/tex]
[tex]O\approx 72[/tex]
Therefore, the measure of angle O is 72 degrees.