Given:
The equation is
[tex]y=\log_2x[/tex]
The domain is [tex]\{\dfrac{1}2, 1, 2, 4, 8, 16\}[/tex].
To find:
The graph of six points that would satisfy the equation.
Solution:
We have,
[tex]y=\log_2x[/tex]
For [tex]x=\dfrac{1}{2}[/tex],
[tex]y=\log_2\dfrac{1}{2}[/tex]
[tex]y=\log_22^{-1}[/tex]
[tex]y=-1[/tex] [tex][\because \log_aa^x=x][/tex]
Similarly, at x=1,
[tex]y=\log_22^0[/tex]
[tex]y=0[/tex]
At x=2,
[tex]y=\log_22^1[/tex]
[tex]y=1[/tex] [tex][\because \log_aa^x=x][/tex]
At x=4,
[tex]y=\log_22^2[/tex]
[tex]y=2[/tex] [tex][\because \log_aa^x=x][/tex]
At x=8,
[tex]y=\log_22^3[/tex]
[tex]y=3[/tex] [tex][\because \log_aa^x=x][/tex]
At x=16,
[tex]y=\log_22^4[/tex]
[tex]y=4[/tex] [tex][\because \log_aa^x=x][/tex]
Plot the points [tex](\dfrac{1}{2},-1),(1,0),(2,1),(4,2),(8,3),(16,4)[/tex] on a coordinate plane as shown below.