Use the domain {1/2, 1, 2, 4, 8, 16} and plot the six points that would satisfy the equation. Submit your graph.

y=log2 X

Respuesta :

Given:

The equation is

[tex]y=\log_2x[/tex]

The domain is [tex]\{\dfrac{1}2, 1, 2, 4, 8, 16\}[/tex].

To find:

The graph of six points that would satisfy the equation.

Solution:

We have,

[tex]y=\log_2x[/tex]

For [tex]x=\dfrac{1}{2}[/tex],

[tex]y=\log_2\dfrac{1}{2}[/tex]

[tex]y=\log_22^{-1}[/tex]

[tex]y=-1[/tex]                          [tex][\because \log_aa^x=x][/tex]

Similarly, at x=1,

[tex]y=\log_22^0[/tex]

[tex]y=0[/tex]

At x=2,

[tex]y=\log_22^1[/tex]

[tex]y=1[/tex]                      [tex][\because \log_aa^x=x][/tex]

At x=4,

[tex]y=\log_22^2[/tex]

[tex]y=2[/tex]                      [tex][\because \log_aa^x=x][/tex]

At x=8,

[tex]y=\log_22^3[/tex]

[tex]y=3[/tex]                      [tex][\because \log_aa^x=x][/tex]

At x=16,

[tex]y=\log_22^4[/tex]

[tex]y=4[/tex]                      [tex][\because \log_aa^x=x][/tex]

Plot the points [tex](\dfrac{1}{2},-1),(1,0),(2,1),(4,2),(8,3),(16,4)[/tex] on a coordinate plane as shown below.

Ver imagen erinna
ACCESS MORE