Respuesta :

Given:

The given polynomial is

[tex]mx^3+20x^2+nx-36[/tex]

When it divided by (x+1) gives remainder 0 and when divided by (x-2) gives remainder of 45.

To find:

The values of m and n.

Solution:

According to the remainder theorem, if a polynomial P(x) is divided by (x-c), then the remainder is P(c).

Let the given polynomial be P(x).

[tex]P(x)=mx^3+20x^2+nx-36[/tex]

When it divided by (x+1) gives remainder 0. So, P(-1)=0.

[tex]P(-1)=m(-1)^3+20(-1)^2+n(-1)-36[/tex]

[tex]0=-m+20-n-36[/tex]

[tex]0=-m-n-16[/tex]

[tex]m+n=-16[/tex]                   ...(i)

When P(x) is divided by (x-2) gives remainder of 45. So, P(2)=0

[tex]m(2)^3+20(2)^2+n(2)-36=45[/tex]

[tex]8m+80+2n-36=45[/tex]

[tex]8m+2n+44=45[/tex]

[tex]8m+2n=45-44[/tex]

[tex]8m+2n=1[/tex]                  ...(ii)

Multiply 2 on both sides of (i).

[tex]2m+2n=-32[/tex]                   ...(iii)

Subtract (iii) from (ii).

[tex]6m=33[/tex]

[tex]m=\dfrac{33}{6}[/tex]

[tex]m=5.5[/tex]

Putting m=5.5 in (i), we get

[tex]5.5+n=-16[/tex]

[tex]n=-16-5.5[/tex]

[tex]n=-21.5[/tex]

Therefore, the values of m and n are 5.5 and -21.5 respectively.

ACCESS MORE