Given:
The given polynomial is
[tex]mx^3+20x^2+nx-36[/tex]
When it divided by (x+1) gives remainder 0 and when divided by (x-2) gives remainder of 45.
To find:
The values of m and n.
Solution:
According to the remainder theorem, if a polynomial P(x) is divided by (x-c), then the remainder is P(c).
Let the given polynomial be P(x).
[tex]P(x)=mx^3+20x^2+nx-36[/tex]
When it divided by (x+1) gives remainder 0. So, P(-1)=0.
[tex]P(-1)=m(-1)^3+20(-1)^2+n(-1)-36[/tex]
[tex]0=-m+20-n-36[/tex]
[tex]0=-m-n-16[/tex]
[tex]m+n=-16[/tex] ...(i)
When P(x) is divided by (x-2) gives remainder of 45. So, P(2)=0
[tex]m(2)^3+20(2)^2+n(2)-36=45[/tex]
[tex]8m+80+2n-36=45[/tex]
[tex]8m+2n+44=45[/tex]
[tex]8m+2n=45-44[/tex]
[tex]8m+2n=1[/tex] ...(ii)
Multiply 2 on both sides of (i).
[tex]2m+2n=-32[/tex] ...(iii)
Subtract (iii) from (ii).
[tex]6m=33[/tex]
[tex]m=\dfrac{33}{6}[/tex]
[tex]m=5.5[/tex]
Putting m=5.5 in (i), we get
[tex]5.5+n=-16[/tex]
[tex]n=-16-5.5[/tex]
[tex]n=-21.5[/tex]
Therefore, the values of m and n are 5.5 and -21.5 respectively.