Answer:
[tex]V = 91.4m^3[/tex]
Step-by-step explanation:
Given
[tex]h = 13.8[/tex] --- height
[tex]C = 15.8[/tex] --- circumference
Required
Determine the volume
First, we calculate the radius of the base
The circumference is:
[tex]C = 2\pi r[/tex]
[tex]15.8 = 2\pi r[/tex]
Make r the subject
[tex]r = \frac{15.8}{2\pi}[/tex]
[tex]r = \frac{7.9}{\pi}[/tex]
The volume is then calculated as:
[tex]V = \frac{1}{3}\pi r^2h[/tex]
This gives:
[tex]V = \frac{1}{3} * \pi * (\frac{7.9}{\pi})^2 * 13.8[/tex]
[tex]V = \pi * \frac{62.41}{\pi^2} * 4.6[/tex]
[tex]V = \frac{62.41}{\pi} * 4.6[/tex]
[tex]V = \frac{62.41* 4.6}{\pi}[/tex]
Take [tex]\pi = 3.14[/tex]
[tex]V = \frac{62.41* 4.6}{3.14}[/tex]
[tex]V = 91.4m^3[/tex] --- approximated