For a particular reaction at 135.4 °C, Δ=−775.41 kJ/mol, and Δ=817.91 J/(mol⋅K).

Calculate ΔG for this reaction at 12.7 °C.

Δ=

Respuesta :

Answer:

[tex]-675.053\ \text{kJ/mol}[/tex]

Explanation:

[tex]\Delta G[/tex] = Gibbs free energy = [tex]-775.41\ \text{kJ/mol}[/tex]

[tex]\Delta S[/tex] = Change in entropy = [tex]817.91\ \text{J/mol K}=0.81791\ \text{kJ/mol K}[/tex]

[tex]T[/tex] = Temperature = [tex]135.4^{\circ}\text{C}=408.55\ \text{K}[/tex]

[tex]\Delta H[/tex] = Change in enthalpy

Gibbs free energy is given by

[tex]\Delta G=\Delta H-T\Delta S\\\Rightarrow \Delta H=\Delta G+T\Delta S\\\Rightarrow \Delta H=-775.41+408.55\times 0.81791\\\Rightarrow \Delta H=-441.253\ \text{kJ/mol}[/tex]

[tex]T=12.7^{\circ}\text{C}=285.85\ \text{K}[/tex]

[tex]\Delta G=\Delta H-T\Delta S\\\Rightarrow \Delta G=-441.253-285.85\times 0.81791\\\Rightarrow \Delta G=-675.053\ \text{kJ/mol}[/tex]

The required Gibbs free energy is [tex]-675.053\ \text{kJ/mol}[/tex].